Питание растений
Питание растений — процесс поглощения из внешней среды, передвижения, накопления и трансформации питательных веществ, необходимых для жизни растений. В ходе этого процесса происходит обмен веществ между растениями и окружающей средой. Неорганические вещества, находящиеся в почве, атмосфере и воде поступают в растение, и используются для синтеза сложных органических соединений, часть веществ может выводиться из растительного организма в окружающую среду.
Зелёные растения под действием солнечного света в процессе фотосинтеза из углекислого газа, воды и простых минеральных солей синтезируют органические вещества, которые в свою очередь обеспечивают пищей человека и животных. В результате этого процесса вся зелёная растительность в дневное время выделяет большое количества кислорода, которым дышат живые организмы. Поэтому жизнь на Земле обусловлена работой высших и низших растений. О масштабе и значимости этого процесса в природе можно судить по следующим данным: зелёные растения ежегодно образуют в пересчете на глюкозу до 400 млрд т органических веществ, из которых 115 млрд т — на суше, связывается до 170 млрд т углекислого газа и разлагается при фотолизе в растениях 130 млрд т воды с выделением 115 млрд т кислорода.
Для синтеза органических веществ растения в мировом масштабе используют до 2 млрд т азота и 6 млрд т зольных элементов. Запасы азота в атмосфере составляют 4·1015 т, однако они не определяют обеспеченность культур азотом, так как растения используют этот элемент из почвы, а не атмосферы.
Растение через листья получает более 95% углекислого газа и может усваивать путём некорневого питания из водных растворов зольные элементы и азот. Однако основное количество азота, воды и зольных питательных веществ поступает из почвы через корневую систему.
Вода потребляется растением и используется в процессе питания фотолиза и в значительно большем количестве испаряется листьями. Для образования 1 кг сухой массы урожая культуры испаряют 300-400 кг воды. В неблагоприятных условиях расход воды возрастает в 1,5-2 раза, тогда как в оптимальных условиях расход воды снижается на 15-20%.
Из-за взаимосвязи с погодно-климатическими условиями регулирование и оптимизация процесса питания растений и обмена веществ не всегда возможна. От этих условий зависит и содержание питательных веществ в почве в доступной для растений форме. Мобилизация или иммобилизация отдельных питательных веществ в почве также определяется активностью и направленностью химических, физико-химических и микробиологических процессов, биологическими свойствами самого растения, динамикой поглощения отдельных катионов и анионов в процессе вегетации.
На процессы, определяющие рост и развитие растений, сильное влияние оказывают удобрения. Они изменяют содержание солей в почве, интенсивность и направленность химических, физико-химических и биологических процессов, реакцию и буферность почвы, поглотительную способность.
Типы питания растений
Автотрофный тип питания — самостоятельное обеспечение растением своих потребностей в питательных веществах, посредством поглощения неорганических веществ из почвы и углекислого газа из атмосферы. Характерен для большинства растений. К организмам с автотрофным типом питания относятся также некоторые бактерии, способные фотосинтетически или хемисинтетически усваивать углекислый газ.
Симбиотрофный тип питания — обеспечение растением своих потребностей в питательных веществах за счёт других организмов (симбионтов). Симбиоз в ходе эволюционных процессов развился как полезная для растений форма отношений. При симбиотрофном типе питания отмечается взаимное использование продуктов обмена веществ для питания. Границы симбиоза не всегда могут быть точно определены, так как трудно определить пользу или вред, приносимые одним организмом другому.
Микотрофный тип питания — симбиоз высшего растения с грибами. Микориза гриба обеспечивает поступление в высшее растение воды и растворённых в ней минеральных солей и других веществ, грибы используют органические соединения, синтезируемые высшим растением. Значение микоризы грибов заключается в увеличении поглощающей поверхности корней растения за счёт мицелия гриба.
Открыты микоризные грибы, способствующие улучшению питание растений фосфором. Дальнейшее изучение этого симбиоза и использование его в практике земледелия может иметь большое значение, так как позволяет сократить применение фосфорных удобрений. Например, в полевом опыте, проведенном в Уэльсе, при известковании и подкормке фосфором урожайность клевера, инокулированного микоризой, по сухому веществу была в 3 раза выше, образование побегов увеличилось в 2 раза, а клубеньков ризобиума — в 5 раз. Аналогичные данные получены в Тропической Африке, Бразилии, Австралии и Испании на почвах, бедных доступным фосфором.
Бактериотрофный тип питания — симбиоз высших растений с бактериями. Наиболее яркий пример — симбиоз клубеньковых бактерий с бобовыми растениями. В условиях интенсификации, химизации и экологизации земледелия возрастает значение способности бобовых растений и микроорганизмов связывать молекулярный азот атмосферы. Ежегодно в результате симбиоза бактерий с бобовыми растениями фиксируется 40-106 т азота.
Условия питания растений
Обеспечение оптимальных условий питания за счёт использования удобрений позволяет более экономно расходовать влагу на создание единицы урожая. Коэффициент транспирации при этом может снижаться на 15-20%. С другой стороны, экономическая эффективность удобрений дополнительным урожаем возрастает при условии хорошего водоснабжения растений. Отмечены многочисленные случаи отсутствия положительного эффекта удобрений на кислых и солонцовых почвах.
Для правильной оценки эффективности применения удобрений необходимо правильно оценивать все факторы, лимитирующие урожайность. Например, в северных районах в условиях достаточного увлажнения, большее значение приобретают факторы тепла и обеспеченности почв питательными веществами.
В южных районах, особенно на обыкновенных южных чернозёмах и каштановых почвах, характеризующихся высоким потенциальным плодородием, лимитирующим фактором чаще является недостаток влаги.
Виды питания растений
Основная страница: Воздушное питание растений (фотосинтез)
Основная страница: Минеральное питание растений
Воздушное питание растений — углеродное питание растений, осуществляемое за счёт ассимиляции углекислого газа атмосферы зелёными листьями в процессе фотосинтеза.
Некорневое питание растений — процесс поступление питательных веществ в растения через надземные органы. Открытие этого процесса послужило развитию применения некорневых подкормок, которые позволяют повысить урожай и его качество.
Корневое питание растений — поглощение из почвы воды и минеральных солей, а также в незначительных количествах некоторых органических веществ.
Согласно исследованиям, деление на корневое и воздушное питание условно, так как одни и те же вещества могут поглощаться как корнями, так и листьями. Так, углекислота поступает в растение через корни в той же мере, что и через листья. Сера поступает в растение через корни в виде сульфатов. Позже благодаря применению радиоизотопа серы была показана способность растений усваивать оксиды серы из воздуха через листья.
Корневое и некорневое питание растений взаимосвязаны. Так, недостаток питательных веществ в почве приводит к задержке образования органических соединений в листьях, что, в свою очередь, тормозит развитие растений.
Химические элементы, необходимые растениям
Растениям необходимо согласно современным данным 20 элементов и 12 относятся к условно необходимым:
- необходимые (биогенные, или биофильные): водород, натрий, калий, медь, магний, кальций, цинк, бор, углерод, азот, фосфор, ванадий, кислород, сера, молибден, хлор, йод, марганец, железо, кобальт;
- условно необходимые: литий, серебро, стронций, кадмий, алюминий, кремний, титан, свинец, хром, селен, фтор, никель.
Таблица. Содержание основных элементов минерального питания в сухом веществе типичного растения (Смирнов, Муравин).
Макроэлемент | Содержание, тыс. на 1 млрд атомов | Микроэлемент | Содержание, тыс. на 1 млрд атомов |
---|---|---|---|
N | 10000 | B | 3 |
P | 1060 | Mn | 1 |
K | 3760 | Zn | 0,3 |
Ca | 1840 | Cu | 0,1 |
Mg | 1740 | Mo | 0,005 |
S | 580 | Co | 0,001 |
Fe | 130 |
К необходимым относятся элементы, участвующие в жизненных процессах растений, и которые не могут быть заменены другими. К условно необходимым относятся те, которые по данным исследований могут иметь положительное действие на развитие некоторых растений.
Микроэлементы — элементы, содержание которых выражается тысячными и стотысячными долями процентов. Эффективность некоторых микроэлементов зависит от природно-климатических условий. Например, положительное действие цинка, марганца и железа наблюдается на нейтральных почвах степной зоны, особенно на карбонатных чернозёмах, тогда как на дерново-подзолистых почвах растения часто страдают от их избытка. В лесостепной и степной зонах редко наблюдается прибавка урожая от применения медных микроудобрений, за исключением кукурузы в некоторых случаях. Напротив, на осушенных болотных торфяных почвах медь в качестве микроудобрения является необходимым условием получения высоких урожаев зерновых культур.
Молибден почти повсеместно оказывает положительное влияние на урожай бобовых культур, что связано с его участием в физиолого-биохимических процессах фиксации атмосферного азота клубеньковыми бактериями. Однако эффективность молибдена в различных почвенно-климатических условиях различна, что объясняется различным содержанием его подвижных форм в почвах.
Ультрамикроэлементы — элементы, содержание которых составляет менее стотысячной доли процента. К ультрамикроэлементам относятся золото, серебро, хром, никель, вольфрам, бром, уран, рубидий, цезий и другие. Физиологическое значение этих элементов в жизни растений мало изучено.
Деление на макро-, микро- и ультрамикроэлементы условно. Например, железо, по содержанию в растениях относится к макроэлементам, но по выполняемым функциям — к микроэлементам.
Содержание микроэлементов в различных органах растений подчиняется определенным закономерностям. Так, марганец и молибден, чаще, в больших количествах содержатся в листьях, тогда как цинк, бор, кобальт, медь при достаточной обеспеченности накапливаются как в вегетативных, так и генеративных органах. Для зерновых культур характерно более высокое содержание бора в зерне, а для бобовых — в вегетативных органах.
Разные биологические группы растений различаются по требованиям к оптимальным концентрациям микроэлементов. Так, кукуруза и табак испытывают большую потребность в цинке, зерновые культуры — в марганце и молибдене.
Требования растений к элементам питания
Растения для своего роста, развития и формирования урожая используют органические и минеральные вещества, в процессы фотосинтеза которые трансформируются в сложные органические соединения.
В составе растения содержат углерод, кислород, водород, азот и многие другие элементы. На долю углерода, кислорода и водорода суммарно приходится 94% сухого вещества, по элементно: на долю углерод — 45%, кислорода — 42%, водорода — 7%. Остальные 6% сухой массы состоят из азота и минеральных элементов.
Основным питательным веществом является углекислый газ CO2. Ежегодно растения поглощают из атмосферного воздуха около 20 млрд т углерода.
Практически все химические элементы были найдены в различных растительных частях, доказано участие 27 элементов в биохимических процессах, 15 из них являются необходимыми для роста и развития.
Человек, в результате применения удобрений, агротехнологий, мелиорации, различных видов и сортов, оказывает значительное воздействие на состав и почвенные процессы.
В экстенсивном земледелии единственным источником минеральных веществ для растений был естественный их запас в почве. При истощении естественного плодородия люди исключали эти земли из обработки и осваивали новые. Оставленные участки восстанавливали плодородие за счёт природных процессов длительное время. Наиболее яркими примерами такого подхода являются переложная и залежная системы земледелия.
Трансформационная способность почвы, то есть способность снабжать растения элементами питания и водой, внесенных извне, в интенсивных системах земледелия играет важную роль. Однако и этой способности бывает недостаточно, в условиях современного интенсивного земледелия. Кроме того, к почве предъявляются повышенные требования к фитосанитарному состоянию и агротехнологические свойства. Вследствие чего, требуется улучшение всего комплекса свойств почвы, за счёт использования новейших технологий для расширенного воспроизводства плодородия. Возможность решения этой задачи заложена природой самой почвы, как возобновляемого ресурса. Но неправильное применение почвы способно приводит к потере плодородия.
Формы соединений, в которых растения поглощают элементы питания
Основное количество питательных веществ растения усваивают в ионной форме через корневую систему. Для питания растений в незначительных количествах могут использоваться аминокислоты, сахара, сахарофосфаты.
Аминокислоты, поступив в растения, подвергаются дезаминированию, а высвобождающийся аммиак используется в синтетических процессах.
Азот поглощается в виде нитрата NO3- и аммония NH4+. Эти ионы образуются в почве из органических веществ в результате микробиологической аммонификации и нитрификации. Нитратная форма под действием ферментов восстанавливается до аммиака.
Аммиачная форма азота используется в реакции замещения атома кислорода карбонильной группы кетокислот с образованием соответствующей аминокислоты:
В азотном питании растений большую роль играет процесс азотфиксации молекулярного азота под действием почвенных микроорганизмов. Важные функции в этом процессе выполняют ферменты нитрогеназа, леггемоглобин, соединения группы витамина B12, железо, молибден, кобальт, медь и др.
Сера усваивается растениями в виде сульфата SO42-. В растениях сульфат восстанавливается до cульфита SO32- и сульфида S2-, которые, присоединяя водород, образует сульфгидрильные группы (S—Н), или, теряя атом водорода, — дисульфидную (—S—S—) группу. Сера входит в состав ацетилкоэнзима А, аминокислот цистеина, цистина и метионина.
Фосфор усваивается растениями в виде фосфатов H2PO4-, HPO42- или PO43-. В растениях фосфор входит в состав нуклеиновых кислот, фосфолипидов — соединений, отвечающих за свойства клеточных мембран, коферментов, в том числе пиридиннуклеотидов и нуклеозид фосфатов. В энергетическом обмене важное значение аденозинфосфаты.
Первичная метаболизация фосфора связана с его вовлечением в синтез нуклеотидов в течение миллисекунд. При экспозициях до 10 минут фосфор обнаруживается в составе нуклеиновых кислот. Экспозиция более 3 ч, когда метаболический фонд акцепторов фосфора насыщен, показывает поступление фосфора в вакуоль в неорганической форме. В условиях отсутствия воздуха происходит накопление не использованных в дыхательном метаболизме акцепторов фосфора, что объяснят интенсивное накопление фосфора в корнях при недостатке кислорода.
Хлор поступает в растения в виде хлорида Cl-. Во многих растениях хлор может присутствовать в больших концентрациях, при этом не оказывая отрицательного действия. В первую очередь это относится к галофитам — солеустойчивым растениям.
Бор и молибден поступают в растения в виде боратов и молибдатов.
Кальций, калий, магний, медь, железо, цинк поступают в растения в форме катионов, марганец — в форме катионов и анионов.
Высокая концентрация ионов калия до 50-100 мМ — характерная особенность всех растительных и животных клеток. Только при определенной концентрации ионов калия в клетке могут нормально проходить биосинтез белка, фотосинтез, дыхание, синтез высокомолекулярных соединений (крахмала, жиров, углеводов).
Питание растений в разные периоды вегетации
Поглощение элементов питания в онтогенезе, то есть в течение вегетации, происходит неравномерно, поэтому система удобрения должна учитывать потребности растений в разные периоды жизненного цикла. Недостаточное обеспечение питания в различные периоды жизни растений приводит к снижению урожайности и ухудшению качества растительной продукции.
Особенно важно обеспечить питательными веществами растения в критический период, когда недостаток питания в это время резко ухудшает рост и развитие. То же относится и к периоду максимального поглощения.
Высокая чувствительность к недостатку и к избытку минерального питания отмечается у растений в начальный период роста.
Таблица. Влияние питания растений фосфором на урожайность ячменя.
Условия питания | Урожайность, % | |
---|---|---|
общая | зерно | |
Нормальное питание фосфором постоянно | 100 | 100 |
Без фосфора первые 15 дней | 17,4 | 0 |
Без фосфора от 45 до 60 дней | 102 | 104 |
Высокая потребность молодых растений в минеральном питании объясняется высокой интенсивностью синтетических процессов при слаборазвитой корневой системе. Так, у зерновых злаков закладка и дифференциация репродуктивных органов начинается в период развёртывания первых трёх-четырёх листочков. Недостаток азота в этот период приводит к сокращению числа колосков и снижению урожая. Последующее нормальное питание не компенсирует дефицит питательных веществ на начальных этапах развития.
Таблица. Питание азотом и урожай ячменя, г на сосуд.
Условия питания | Солома | Зерно |
---|---|---|
Азот на протяжении всего периода вегетации | 26,1 | 6,4 |
Без азота первые 15 дней | 4,5 | 0 |
Без азота от 15 до 30 дней | 19,4 | 4,2 |
Без азота от 30 до 40 дней | 29,1 | 8,7 |
Без азота от 45 до 60 дней | 29,4 | 7,7 |
Без азота после колошения | 18,6 | 3,8 |
Интенсивность потребления питательных веществ у разных культур меняется в зависимости от периода развития. Например, растения сахарной свёклы в первый месяц потребляют азота, фосфора и калия по 2 кг/га, а во второй — N 96 кг/га, P2O5 34 кг/га и K2O 133 кг/га.
Травы и сахарная свёкла отличаются длительным периодом потребления питательных веществ. Конопля, наоборот, имеет короткий период интенсивного потребления — 75% от общего количества питательных веществ потребляется от фазы бутонизации до фазы цветения.
Наибольшее количество элементов минерального питания яровые зерновые потребляют в период от выхода в трубку до колошения. В период колошения пшеница потребляет азота, фосфора и калия около 76% от максимального, ячмень — около 67% и овёс — 47%.
Таблица. Потребление питательных веществ яровыми зерновыми культурами, % от максимального.
Фаза роста | Пшеница | Ячмень | Овёс | ||||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
Колошение | 71 | 68 | 88 | 71 | 56 | 73 | 51 | 36 | 54 |
Цветение | 97 | 100 | 100 | 96 | 74 | 100 | 82 | 71 | 100 |
Полная спелость | 90 | 93 | 67 | 100 | 100 | 64 | 100 | 100 | 83 |
Злаковые культуры наиболее требовательны к азотному питанию в период образования ассимиляционного аппарата и в период дифференциации репродуктивных органов. Сахарная свёкла нуждается в достаточном обеспечении калием во время сахаронакопления.
Таблица. Динамика потребления питательных элементов капустой, % от максимального.
Фаза роста | От начала вегетации | ||
---|---|---|---|
N | P2O5 | K2O | |
Рассада (10.06) | 0,17 | 0,14 | 0,12 |
Формирование кочана (27.07) | 30,5 | 21,8 | 24,2 |
Рыхлый кочан (7.09) | 96,4 | 100 | 96,6 |
Хозяйственная спелость | 100 | 90,5 | 100 |
Таблица. Влияние азотного питания на лён.
Условия питания | Масса растений, % |
---|---|
Полное питание весь период | 100 |
Без азота от "ёлочки" до бутонизации | 38,3 |
Без азота от бутонизации до уборки | 99,0 |
Огурец требователен к азотному питанию в период формирования ассимиляционного аппарата, к фосфорному — перед цветением. В период плодоношения огурец предъявляет повышенные требования к обеспечению азотом и калием.
Усиление азотного и частично фосфорного питания в период бутонизации и цветения приводит к увеличению урожая зерновых. Повышенное питание азотом в период образования листовой массы и улучшение фосфорно-калийного питания в дальнейшем повышает урожайность корне- и клубнеплодов.
Потребность большинства культур в азотном питании уменьшается к началу плодообразования, роль фосфора и калия, наоборот, возрастает. В целом, период плодообразования отличается снижением потребления питательных веществ, а процессы жизнедеятельности в растениях к концу вегетации осуществляются преимущественно за счёт реутилизации накопленных питательных веществ.
В системе удобрения основное удобрение должно обеспечивать питание растений на протяжении всего вегетационного периода, поэтому до посева вносят все органические и большую часть минеральных удобрений. Для обеспечения растений питательными веществами в начальный период вносят припосевное удобрение.
Количество и качество урожая можно регулировать подкормками в разные периоды вегетации. Подкормки улучшают питание растений в наиболее ответственные периоды или при выявлении дефицита какого-либо элемента питания.
Потребность в питательных веществах изменяется также в течение суток. Суточная периодичность отмечена почти для всех жизненных процессов растений.
В условиях искусственного питания (на питательных средах) имеют значение состав, концентрация питательного раствора, режим его использования в течение вегетации. Например, временным дефицитом питательных веществ во внешней среде в определенные периоды вегетации можно усилить развитие корневой системы, а заменой питательного раствора на воду вызвать временное голодание, стимулировав этим клубнеобразование у картофеля, завязей плодов у томата и добиться таким приёмом скороспелости.
Суточная периодичность поглощения питательных веществ проявляется при переменных и постоянных условиях среды и носит характер внутреннего эндогенного ритма. Такая регулируемая суточная периодичность процессов позволяет растениям приспосабливаться к изменяющимся условиям внешней среды. Эндогенные суточные и околосуточные (циркадные) ритмы в постоянных искусственных условиях имеют тенденцию к затуханию, но восстанавливаются при меняющихся условиях. Способность растений менять циркадный ритм позволяет повысить их выживаемость.
Ритмы у растений бывают годовые, сезонные и суточные. Также отмечаются ритмы импульсного характера, с периодами от нескольких секунд до часов. Например, такие ритмы короткой активности отмечены в поглощающей и выделительной деятельности корней.
В условиях искусственного выращивания культур, представляет интерес метод периодического питания, так как позволяет без увеличения расходов повысить продуктивность растений.
Литература
- Минеев В. Г., Сычёв В. Г., Гамзиков Г. П. и др. Агрохимия. Учебник. / Под ред. Минеева В. Г. М.: Изд-во ВНИИА им. Д. Н. Прянишникова. 2017
- Ягодин Б. А., Жуков Ю. П., Кобзаренко В. И. Агрохимия. / Под ред. Б. А. Ягодина М.: Колос. 2002