Фосфор — химический элемент, известен в нескольких модификациях: белый, красный, черный и металлических, представляющих собой твердые вещества, соответствующего цвета. Впервые выделен гамбургским аптекарем Геннингом Брандтом в 1669 г. из. Его роль в жизни растений впервые упоминается Дендональдом в 1795 г. Швейцарский естествоиспытатель Соссюр несколько позже обнаружил фосфат кальция в золе всех проанализированных им растений.
Содержание фосфора в растительном организме
Потребление фосфора растениями меньше, чем азота, на его долю приходится 0,2-1,0% массы сухого вещества. Распределение фосфора в растениях то же, что и азота: большего всего его накапливается в репродуктивных органах и органах, где интенсивно происходят процессы синтеза органических веществ. Азот и фосфор в растительных организмах характеризуются довольно устойчивым соотношением в урожае.
Соотношение азота и фосфора для зерна, корней, клубней, сена примерно составляет 1:0,3, тогда как между азотом и калием оно может варьировать от 1:0,6 до 1:1,4. В вегетационных опытах, меняя соотношение азота и фосфора в питательных средах, можно добиться различное соотношение этих элементов в растениях, однако в полевых условиях это соотношение стабильно благодаря свойству почвы регулировать питание растений.
Таблица. Среднее соотношение основных элементов питания в урожае растений, %1Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.
Озимая пшеница, зерно | |||
Сахарная свекла, корни | |||
Картофель, клубни | |||
Клевер луговой, сено |
Фосфор в растениях представлен в минеральном (5-15%) и органическом (85-95%) виде. Минеральные соединения фосфора — фосфаты калия, кальция, магния и аммония. Органические соединения: нуклеиновые кислоты, нуклеопротеиды и фосфатопротеиды, аденозинфосфаты, сахарофосфаты, фосфатиды, фитин.
Нуклеиновые кислоты — рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК) — высокомолекулярные соединения, имеющие форму спиральных нитей (25 А в диаметре) и состоящие из комбинаций нуклеотидов. В состав нуклеотидов входят азотистые основания, сахара и фосфорная кислота. Углеводный компонент РНК — рибоза, в ДНК — дезоксирибоза.
Соединяясь между собой в различных комбинациях, нуклеотиды образуют нуклеиновые кислоты. Одна молекула нуклеиновой кислоты может иметь тысячи комбинаций нуклеотидов, соединяющихся между собой кислотными остатками фосфорной кислоты. Комбинации нуклеотидов в нуклеиновых кислотах образуют своеобразный шифр, которым записываются наследственные свойства организма. Благодаря практически бесконечному количеству комбинаций нуклеотидов создается огромное разнообразие видов всех живых существ.
ДНК — молекула, хранящая всю информацию о генетических свойствах организма, РНК непосредственно участвует в синтезе белковых веществ. На долю фосфора в нуклеиновых кислотах приходится около 20%. Молекулы нуклеиновых кислот присутствуют во всех тканях и органах растений, в любой растительной клетке. В листьях и стеблях растений на долю нуклеиновых кислот приходится 0,1-1,0% сухой массы, в молодых листьях и в точках роста побегов — больше, в старых листьях и стеблях — меньше. Наибольшее содержание нуклеиновых кислот в пыльце, зародыше семян, кончиках корней.
Нуклеиновые кислоты могут образовывать комплексы с белками — нуклеинопротеиды, входящие в состав клеточных ядер.
Фосфор участвует в энергетическом обмене растительных клеток за счет аденозинфосфатов, способные при гидролизе выделять энергию. По количеству остатков фосфорной кислоты различают аденозинмонофосфат (АМФ), аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ). Молекула АТФ состоит из пуринового основания (аденина), сахара (рибозы) и трех остатков ортофосфорной кислоты:
Энергоемкие фосфатные макроэргические связи (волнистая линия) содержат 50280 Дж энергии, а при их разрыве выделяется 31 425 Дж. При этом теряется один кислотный остаток фосфорной кислоты, а АТФ переходит в АДФ. АДФ также может участвовать в этой схеме с образованием АМФ.
Аденозинфосфатные соединения в растительной клетке являются аккумулятором энергии, которая расходуется во многих жизненно важных процессах клетки, например, биосинтезе белков, жиров, углеводов, аминокислот и других соединений. Образование АТФ в растениях происходит благодаря процессам дыхания. Кроме аденозинфосфатных соединения известны другие макроэргические соединения, включающие в состав фосфор.
Фосфатиды, или фосфолипиды, также содержатся в любой растительной клетке. Представляют собой сложные эфиры глицерина, высокомолекулярных жирных кислот и фосфорной кислоты. Входят в состав фосфолипидных мембран, регулируют проницаемость клеточных органелл и плазмалеммы. Так, в цитоплазме растительных клеток содержится лецитин — фосфатид — жироподобное вещество, производное диглицеридфосфорной кислоты.
В тканях растений присутствуют сахарофосфаты, или фосфорные эфиры сахаров. Известно свыше десяти подобных соединений. Участвуют в дыхании растений, превращении простых углеводов в сложные в процессе фотосинтеза, и взаимных трансформациях. Фосфорилирование — реакция образования сахарофосфатов. Содержание сахарофосфатов в растениях в зависимости от возраста, условий питания составляет от 0,1 до 1,0% сухой массы.
Фитин — кальциево-магниевая соль инозитфосфорной кислоты. По содержанию в растениях фитин среди остальных фосфорорганических соединений занимает первое место.
Таблица. Формы фосфорнокислых соединений в растениях, % P2O5 к сухому веществу2Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.
Пшеница, зерно | |||||||||
Клевер, сено |
Фитин содержится в молодых органах и тканях растений, больше всего в семенах. Например, в семенах бобовых и масличных культур на его долю приходится 1-2% сухой массы, в семенах злаков — 0,5-1,0%. В семенах фитин является запасом фосфора для прорастания и появления молодых всходов.
Большая часть в растениях концентрируется в репродуктивных органах и молодых растущих частях. Фосфор ускоряет образование корневой системы. Максимум потребления фосфора приходится на первые фазы роста и развития. В дальнейшем легко реутилизируется, то есть передвигается из старых тканей в молодые и используется повторно.
Значение фосфора
Фосфор способствует:
- экономичному расходованию влаги растениями;
- повышению засухоустойчивости;
- улучшению углеводного обмена, что способствует повышению сахаристости свеклы и крахмалистости картофеля);
- увеличению содержания сахаров в узлах кущения озимых культур и тканях многолетних трав, что повышает морозоустойчивость и зимостойкость;
- устойчивости к полеганию хлебных злаков;
- устойчивости к болезням;
- процессам оплодотворения цветов, образованию завязей, формированию и дозреванию плодов.
У прядильных культур образуется длинное тонкое и крепкое волокло.
Избыток фосфора приводит к преждевременному развитию и раннему плодоношению, снижая тем самым урожайность.
Недостаток фосфора вызывает замедление роста и развития растений, снижается синтез белка и сахаров, листья формируются мелкие и узкие, задерживаются цветение и созревание плодов. Нижние листья становятся темно-зеленой окраски с красно-фиолетовым, лиловым, синеватым или бронзовым оттенком, края загибаются кверху.
Между азотным и фосфорным питанием растений имеется взаимосвязь: недостаток фосфора замедляет синтез белков в тканях, при этом повышается содержание нитратов. Чаще это проявляется при несбалансированном питании растений, то есть завышенных дозах азота.
Растения наиболее чувствительны к дефициту фосфора в молодом возрасте, когда слаборазвитая корневая система не обладает достаточной поглощающей способностью. Дефицит в этот период не может быть восполнен в последующем, даже при оптимальном фосфорном питании.
Максимальное поглощение фосфора происходит на период интенсивного роста вегетативной массы.
Источники фосфорного питания растений
В природных условиях источником фосфорного питания растений являются соли ортофосфорной кислоты — фосфаты, а также после гидролиза пиро-, поли- и метафосфаты. Последние в почве отсутствуют, но могут входить в состав сложных удобрений.
Ортофосфорная кислота при гидролизе диссоциирует на анионы Н2РО4—, НРО42- и РО43-. Согласно расчетам Б.П. Никольского, в условиях слабокислой реакции почвы, наиболее распространенным и доступным является Н2РО4—, в меньшей степени — НРО42-, РО43- практически не участвует в питании большинства растений, за исключением люпина и гречиха, в меньшей степени горчицы, гороха, донника, эспарцета и конопли.
Таблица. Соотношение недиссоциированных молекул H3PO4 и ее анионов при различных значениях рН среды, %3Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.
Все встречающиеся в почве соли ортофосфорной кислоты и одновалентных катионов (NН4+, Na+, К+) хорошо растворимы в воде. Растворимы также однозамещенные соли двухвалентных катионов кальция Са(Н2РO4)2 и магния Мg(Н2РO4)2. Двузамещенные соли кальция СаНРO4 и магния МgНРO4 плохо растворимы в воде, но растворимы в слабых кислотах, в том числе в кислых корневых выделениях и органических кислотах, образующихся в процессе жизнедеятельности микроорганизмов. Поэтому дигидроортофосфаты (однозамещенные) и гидроортофосфаты (двузамещенные) являются источником фосфора для растений.
Трехзамещенные фосфаты (ортофосфаты) двухвалентных катионов нерастворимы в воде и недоступны для большинства. Однако свежеосажденные трехзамещенный фосфат кальция, образующийся из одно- и двузамещенных фосфатов в процессе химического поглощения почвой, в аморфном состоянии немного лучше поглощается растениями. По мере старения, эти аморфные трифосфаты переходят в кристаллические формы и теряют доступность для растений.
Трехвалентные катионы ортофосфорной кислоты [АlРO4, Аl(ОН)3РO4, FеРO4, Fе2(OН)3РO4 и др.] не доступны растениям, составляют большую часть минеральных фосфатов кислых почв.
В качестве источника фосфорного питания растений является фосфаты в обменно-поглощенном (адсорбированном) почвенными коллоидами состоянии. Эти анионы вытесняются анионами минеральных и органических кислот (лимонной, яблочной, щавелевой). В почве в системе твердая фаза—раствор анионы содержатся в достаточном количестве. В процессе дыхания корни выделяют углекислый газ, который при растворении подкисляет реакцию и образуют гидрокарбонат-ионы. Последние вытесняют адсорбированный фосфор в раствор из ППК.
Экспериментально подтверждено, что обменно-поглощенные анионы фосфорной кислоты по доступности для растений приближаются к водорастворимым фосфатам. Однако количество последних в почве мало, поэтому адсорбированные фосфаты имеют большое значение в балансе фосфорного питания растений.
Некоторые растения обладают способностью усваивать фосфат-ион органических соединений, например, фитина и глицерофосфатов, благодаря корневым выделениям, содержащим фермент фосфатазу. Под действием фосфатазы отщепляется анион фосфорной кислоты от органических соединений и поглощается растением. К таким растениям относятся горох, кукуруза, бобы. Фосфатазная активность возрастает в условиях дефицита фосфора.
В процессе филогенеза растения приспособились к питанию из растворов с очень низкими концентрациями. В исследованиях М.К. Домонтовича все опытные растения (овес, кукуруза, пшеница, горох, горчица и гречиха) могли поглощать фосфор из растворов с концентрациями от 0,01 до 0,03 мг Р2O5 на 1 л. Принято считать, оптимальной концентрацию фосфора для питания растений — 1 мг/л.
Поглощенный корнями фосфор быстро включается в синтез сложных органических соединений уже непосредственно в корнях. В опытах с тыквой, 30% меченого фосфора 32Р через 30 с после поглощения обнаруживалось в составе органических соединений, через 3-5 мин — 70% поглощенного фосфора. В первую очередь фосфор расходуется на синтеза нуклеотидов. Для транспортировки фосфора к другим частям растения, фосфор вновь трансформируется в минеральные соединения.
Круговорот и баланс фосфора в земледелии
В естественных биоценозах фосфор не имеет источников пополнения запасов в почве, в то же время, его естественные запасы в почвах значительны. Согласно данным А.В. Соколова, в метровом слое почвы содержится от 10 до 35 т/га различных соединений фосфора. Благодаря тому, что корни многих полевых культур проникают на глубину от 0,9 до 2,8 м, а многолетних трав — до 3-5 м, то подвижные формы могут использоваться растениями. Экспериментально подтверждено потребление Р2O5 растениями подпахотных горизонтов, доля которого может составлять до 30% от общего выноса с урожаем.
Вынос фосфора с сельскохозяйственной продукцией в среднем составляет 25-40 кг/га в год. Таким образом, естественные запасы в почве значительно превосходят вынос.
В естественных биоценозах с характерным для них замкнутым циклом биогенных элементов происходит медленное накапливание фосфора в верхних слоях почв за счет его перераспределения от жизнедеятельности растений.
Таблица. Содержание валового фосфора и органических фосфатов в различных почвах, мг/100 г (по обобщенным данным Гинзбурга)
Особенностью круговорота фосфора в агроценозах является то, что большая его часть концентрируется в урожае, например, в зерне сосредоточено до 2/3 от всего поглощенного растениями фосфора, оставшаяся 1/3 в нетоварной части — соломе. Учитывая, что лишь небольшая часть зерна остается в хозяйстве, отчуждение фосфора из хозяйств получается значительным. Кроме того, фосфор содержится и в животноводческой продукции, что также следует учитывать во внешнехозяйственном балансе.
Таблица. Содержание фосфора в урожае4Основы агрономии: учебное пособие/Ю.В. Евтефеев, Г.М. Казанцев. - М.: ФОРУМ, 2013. - 368 с.: ил.
В агроценозах круговорот фосфора относительно проще, чем круговорот азота.
Потери фосфора могут быть связаны с эрозией почв в виде потерь твердой части с ветровой эрозией и стока — с водной. В среднем потери могут составлять до 11 кг/га в год. На почвах среднего и тяжелого гранулометрического состава инфильтрация как правило не превышает 1 кг/га в год, на легких и торфяных — до 3-5 кг/га.
Незначительное количество фосфора поступает в почву с семенами растений, атмосферными осадками и пылью.
По этим причинам компенсация расходных статей баланса фосфора в земледелии возможно путем применения органических и минеральных удобрений.
В 70-80-е годы в СССР складывался положительный баланс фосфора: во многих регионах произошло увеличение его содержания в почве. Так, в Центральном районе Нечерноземной зоны количество подвижных фосфатов в почве увеличилось с 5,3 до 12,5 мг/100 г, в Московской области — с 6,4 до 20,6 мг/100 г.
Литература
Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.
Основы агрономии: учебное пособие/Ю.В. Евтефеев, Г.М. Казанцев. — М.: ФОРУМ, 2013. — 368 с.: ил.
Агрохимия. Учебник/В.Г. Минеев, В.Г. Сычев, Г.П. Гамзиков и др.; под ред. В.Г. Минеева. — М.: Изд-во ВНИИА им. Д.Н. Прянишникова, 2017. — 854 с.